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FOREWORD

This report describes work accomplished in the program "Quasi
Area Rule for 4eat Addition in Transonic and Supersonic Flight Regimes"
conducted under USAF MIPR APO-71-007. The work was accomplished
during the period 1 Oct 1970 through 31 Aug 1971 at the Naval Post-
graduate School, Monterey, California, under the direction of Dr. Allen
E. Fuhs. The report was submitted on 1 Nov 1971.

The program was sponsored by the Air Force Aero Propulsion Labora-
tory, Wright-Patterson Air Force Base, Ohio under Project 3066, Tur-
bine Engine Propulsion, Task 306603, Advanced Component Research.
Dr. Kervyn D. Mach, A:7APL/TBC, Turbine Engine Components Branch,
was the project engineer.

Publication of this report does not constitute Air Force ap-
proval of the report's findings or conclusions. It is published
only for the exchange and stimulation of ideas.

ERNEST C. SIMPSON
Director, Turbine Engine Division
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ABSTRACT

Body shapes, including axisymmetric and three dimensional, have been

developed to minimize wave drag. The von Karman ogive and the area rule are

examples. Similar work has not been accomplished for optimum shapes with

propulsion. Propulsion can be divided into two categories--those devices with

internal heat addition and those with external burning. For internal heat

addition an analytical model is formulated which introduces the propulsive disc.

Attention is shifted to external burning, which is examined for one dimensional

and two dimensional linearized flow. Heat fronts and combustion fans are

discussed as examples. Forces on a heat source in a uniform stream and

adcent to bodies are derived. Several possible applications are examined

including base pressure augmentation by external burning, spin recovery using

' ' external bumming, and transonic boattail drag alleviation. Previous work on

base pressure augmentation has used a two dimensional planar model. A two

dimensional axisymmetric model is examined.
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II

QUASI AREA RULE

FOR HEAT ADDITION IN T.ANSONIC

AND SUPERSONIC FLIGHT REGIMES

Dr. Allen E. Fuhs
Professor of Aeronautics

Naval Postgraduate School

INTRODUCTION

In subsonic flow, drag can be attributed to viscous forces on the body

surface and to the release of vorticity in the wake. The vorticity is associated

with the generation of lift. In supersonic flow, there is a new phenomenon lead-

ing to drag; it is the radiation of waves from the body. These waves carry

energy whose origin is the work done by drag and vehicle motion.

For almost every case of a body flying through a medium, drag is considered

to be a degradation of performance. Consequently, considerable effort has been

devoted to optimum shapes giving minimum drag.

One approach for optimizing a body shape is to represent the body by sources

and sinks.(l) For a closed axisymmetric body, all sources and sinks are on the

axis. It is found that for a nonlifting body, the slope of the cross sectional

area curve equals the distribution of sources and sinks, f(x). Distance along

the axis is x. By means of the calculus of variations, one can arrive at shapes

giving minimum wave drag. There are constraints on the body geometry, and the

optimum shape depends on these corstraints. Two examples are given in Table I.

The shapes given in Table I are for minimum wave drag. Viscous effects are not

included, and the bodies are nonlifting.

Il
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Table I. Optimum Shapes

Name of Body Constraints Wave Drag

Von Karman* Ogive(2) Given length, t, and base area, S
at2

Ser*Ogv~)Given lengthq t, and volume, V 128 q('

iTr 
t

*Used on Low Altitude Short Range Missile.

**Discovered by W. R. Sears of Cornell University.

It was discovered by Lomax and Heaslet (4 ) and by Whitcomb that the

optimum shape for an axisymmetric body applies to slender bodies with wings and

rudders if one interprets the area distribution properly. It is the area cut by

the Mach cone. If one uses this area distribution from a three-dimensional body

to match the area distribution of an optimum axisymmetric body, then minimum wave

drag occurs. This procedure is known as the area rule.

For a body with thrust, there are several neu variables introduced. Thrust

may be developed by adding heat to a flow internal to the body. Thrust also may

be obtaLned by adding heat external to the body.

Consider external burning. Is there an area rule for a body with external

heat addition analogous to the area rule involving body shape only? For this case,

there are two functions to optimize. One is body shape, and the other is the

distribution of heat addition. Table I gives some typical constraints; an

additional constraint for the optimization could be specific fuel consumption.

2
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Instead of finding minimum drag, the procedure should give the best thrust-

minus-drag or zero thrust-minus-drag depending on the constraints. Since both the

distribution of heat and cross sectional area are involved, an appropriate name

is "quasi area rule."

When thrust is developed by adding heat to a flow internal to the body, the

quasi area rule suggested in the previous paragraphs does not apply. For in-

ternal burning, the waves due to heat addition obviously do not occur as in the

case of external burning. There is, however, a change in stagnation pressure

and temperature between the inlet and nozzle, Also the velocity vector changes

from inlet to exhaust. An energy disc can represent those changes. This

report discusses aspects of the thrust-minus-drag problem for an airbreathing

engine with confined heat addition. Figure 1 illustrates the various problems

that can be studied with internal burning when the emphasis is on thrust-minus-

drag. The analysis is linearized. Two-dimensional (2D) planar is the geometry

of a propulsive wing. Axisymmetric 2D geometry is an isolated nacelle without

fins or wings. Addition of fins or wings yields the 2D propulsion with ID body.

The connection between these two geometrien is the area rule.

Figure 2 outlines the problems of interest for external burning. The

analysis is linearized. For the 2D planar case, the heat and mass sources can

be distributed over a surface or throughout a volume. Volume distributions must

meet requirements for slender body theory. Axisymmetric 2D bodies are related

to 3D bodies by the quasi area rule.

The linearized 2D planar flow with heat addition has been studied extensively.

A solution to the 2D axisymmetric case does not appear in the scientific

literature. Solutions for ID bodies with heat addition have not, as yet, been

A 3
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obtained. In order to develop the quasi area rule, these solutions are

essential building blocks.

PROPULSION WITH INTERNAL HEAT ADDITION

Introduction

For a supersonic aircraft, the variation in nozzle pressure ratio (NPR)

is very large. This requires a variable geometry nozzle. Under certain flight

conditions, the nozzle setting and nozzle flow result in large base or boattail

drag.

One motivation for treating the propulsion-airframe problem as a unit from

the area rule point of view is to obtain new design approaches. First, the

typical variation in NPR and nozzle geometry will be calculated for a

Mach 2.5 aircraft. These results will be discussed to illustrate the problem.

Second, the model for representation of a propulsion system with internal heat

addition will be developed. Third, approaches to solution of the model will be

outlined.

Exhaust Variation with Mach Number

The aim of this section is to calculate nozzle pressure ratio, nozzle area

ratio, mass flow ratio, and thrust of an ideal turbojet as a function of Mach

number. Knowledge of the trends is essential in understanding aircraft exhaust

problems.

Consider an ideal turbojet with an ideal inlet. There is, however, a

restriction on the Mach number, M2 , into the compressor. The thrust is given by

where {n is a mi -; flow of air, and rnd is mass flow of inlet at design conditions.2



C For the inlet, the various areas are illustrated in Figure 3(a). Station 0

is at a point in the freestream where pO is ambient pressuro. Stations 1 and 21

are inlet throat and compressor face respectively. The mass flow ratio is

a M0 A 0 At ()

Md Od At

where M0 is flight Mach number, and MOd is design flight Mach number. Areas

A0 4 At, and Al are identified in Figure 3(a). Both a fixed area and variable

geometry inlet are considered. The ratio AO/At is obtained from isentropic

flow tal;es for given M0 for the variable geometry inlet. For a fixed geometry

inlet A&At comes from flow tables, entering the flow tables with the Mach

number downstream of 9. normal shock at M0. The mass flow ratios are shown in

Figure 4 for bot.h cases. A variable geometry operates supercritically and

swallows more air. A variable geometry ramp or spike inlet may have superior

mass handling capability at subsonic speeds.

The thrust per pound of air for an ideal turbojet is given by

F a

wa g /- 1 Tr TIC

where the symbols not previously defined have the following meaning:

a0 = freestream speed of sound

7r = TTo/To = ratio of stagnation to static freestrea, temperature

= TT 3/TT 2  stagnation temperature ratio across the compressor

The symbol T* deserves more discussion. It is

K = T fT (4)rr c b T4/ 0

where rb = TT /TT 3 = stagnation temperature ratio across the burner or combustor.

The value of TT4 is limited and has a maximum value. Hence for a given engine
,T f
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The station numbering is shown in Figure 1(b). The throat area for the

nozzle is

r PT8

neglecting fuel addition. R is the gas constant. r is a function of the ratio of

heat capacities, y, and has a value of .683 for y = 1.4. The nozzle pressure ratio,

NPR, is PT8/Po . A ratio of A7 to the design value is

7 _ a Q T (6)

A d d NPR TT8 d

The area A8 is obtained from NPR, isentropic flow tables, and the assumption

P8= Po Two useful ratios are AsA c and A7/Ac, i.e., comparing nozzle areas with

compressor face area.

Calcalations were made for the values shown in Table II.

One of the resuIts of the calculation is NFR which is shown in Figure 5. Some

of the other results are summarized in Table III The symbols for the turbine ratios

are T / andTT5/TT4 a t = PT5/PT4"

Figure 6 illustrates the area variations required for a supersonic turbojet

operating at maximum TIT for different l'O. Examination of Figure 6 and the data in

Table III shows why turbojet nozzles usually operate underexpanded at design Mch

number. The percentage variation in A7 is 38 per cent based on design A7. The

percentage variation in A8 is 77 per cent based on design A8. NPR varies from 4 at

low subsonic flight to more than 25 at design M0 of 2.5.

10



Table II. Values for Calculation of Turbojet Quantities

Maximum turbine inlet temperature T 20000F
T4

Altittde Sea Level

Freestream density PO .002378 slugs/ft 3

Freestream speed of sound a0  1117 ft/sec

Compressor area Ac  8.05 ft2

Tip radius at face r, 2 ft

Hub radius at face rh 1.2 ft

Maximum Mach number at compressor M2max 0.65

Inlet throat area at design Atd 7.1 ft2

Design flight Mach number Mod 2.5

Compressor pressure ratio at

100 per cent corrected speed ITa 8

11
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Table III. Results of Calculation for Turbojet Performance and Areas

NPR A.A A

0 NPR A.~A A t tc c

0.2 5.98 .625 .421 .526 .829 .518

0.4 5.63 .627 .423 .542 .825 .508

0.6 5.'05 .628 .425 .574 .818 .495

o.8 4.42 .637 .427 .620 .808 .475

1.0 3.77 .650 .434 .677 .796 .45

1.2 3.15 .663 •443 .762 .780 .42

1.4 2.58 .702 .448 .860 .765 .391

1.6 2.14 .712 .477 1.02 .742 .352

1.8 1.77 .750 .503 1.20 .719 .315

2.0 1.47 .792 .537 1.42 .694 .278

2.2 1.24 .861 .582 1.72 .665 .240

2.4 1.07 .950 .642 2.07 .634 .203

2.5 1.00 1.00 ,685 2.28 .616 .183

r

13
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As shown in Figure 6, to obtain ideal expansion the nozzle is converging-

diverging for all M0 illustrated. Usually the nozzle is a simple converging

nozzle from subsonic through transonic range of MO. This results in a large

boattail area. At the design M0 the exit area for ideal expansion significantly

exceeds the maximum area of the propulsion system. The nozzle is cut off, relative

to ideal, at some area appropriate to maximum engine area. The result is under-

expansion and a ballooning plume. A shock wave may originate at the diverging

streamlines of the plume, giving a drag increment.

Model for Propulsion with Internal Heat Addition

Consider a propulsion device as sketched in the top of Figure 7. To

represent the wave drag of the inlet, it is necessary to duplicate streamline

A-A. It does not matter what the details are of the inlet geometry internal

to the streamtube bounded by A-A.

The inner body which generates a flow having streamline A-A is shown. Note

that it is not the same shape as the inlet spike. A distribution of sources on

the axis could generate the inner body as well as streamline A-A. Note that the

spike shock wave does not have the same angle as the cowl shock wave.

If one applies the momentum relations to the control volume of Figure 7,

the thrust minus drag is given by

T - D+2 uudA-

qc- - ) Eu dA + (PEp q x r

A A2

f(u2 + U2 )dA
y r

A4
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FIGURE 71. MODEL OF AN INLET USING SOURCES.
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where ux Ur, and uy are the dimensionless perturbation velocities arising

from the nacelle. It is apparent that for the case where the exhaust exit

defines a plane, as illustrated in Figure 7, the thrust and drag can be

clearly separated. Waves generated by the exhaust plume do not influence T - D.

Following the analysis suggested by the model of Figure 7, one can obtain

a nacelle of known wave drag. Figure 8 illustrates the concept. Start with an

ogive of known shape. Plot the streamlines in the flow adjacent to the ogive.

Pick the radii r0 and rB suitable for the nacelle. Insert the nacelle within

the streamtube. The wave drag of the ogive and nacelle will be the same. The

dreg can be calculated using the potential function for the ogive. In the

lower part of the figure, a nqcelle with a spike inlet is shown.

Consider some thrust device inside a momentum control volume shown in

Figure 9. How does one modify the variables so as to t'.ange conditions on the

surface of control volume and improve T - D? What does one have available to

change the wave drag? Available variables are: (a) number and location of

nozzles, (b) velocity profile at nozzle exit, and (c) body geometry.

To obtain an optimum configuration, one must have a method to represent

the body and exhaust analytically. The analytical representation can be

subjected to the calculus of variations.

The body can be represented by sources and sinks. Changes in stagnation

pressure, stagnation temperature, velocity vector, and other flow quantities

make representation of exhaust more difficult.

Carrying the idea of Figure 7 further, let us look at an ideal ramjet.

For an ideal ramjet, the following equalities hold true:

17
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FIGURE 8. NACELLE OF KNOWN WAVE DRAG.
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p6  TI

PT6 = T1 TT

v T Pl P6
v6  TT6

v0  TT1

For an ideal ramjet (or for any other propulsion device satisfying the above set

of equalities)f one can represent the flow by sources, sinks, and an "energy

disc." This is illustrated in 1igure 10; stations I and 6 are identified in

Figure 10. The inner body duplicates streamline ABC. The inner body is formed

from the source-sink distribution in the right-hand column of Figure 10. The

change in density, velocity, and stagnation temperature is achieved by an

"energy disc." In fact, that defines the energy disc. It changes the flow so that

the equalities list above is correct. Tne sources, sinks, and energy disc shown

in the bottom of the right column would have the same thrust and drag as the

ideal ramjet sketched in the left-hand column.

This model looks as if it is satisfactory for an ideal ramjet, but it has

some drawbacks:

1. The energy disc is not a heat front or other simple fluid flow.

2. When A, J A6, it may be difficult to apply the energy disc.

3. For the case PT6 / PTl' some means of changing PT must be added.

The energy disc is bounded by a streamtube. Changing PT within the disc gives a

mismatch across the disc in regard to streamline shape.

A satisfactory way of specifying the conditions at station 6 is needed, and

the energy disc has been suggested. One wants to retain sources and sinks for

two reasons. Wave drag is readily calculated if you know the distribution function.

The distribution function can be optimized to yield minimum wave drag.

20
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The energy disc represents the propulsion device. A particular engine

generates changes in PT' TT' and velocity between the inlet ana exhaust. For

the case of a plane for an exit as shown at station 6 in Figure 10v one does not

need the complexity of an energy disc. Equation (7) indicates that drag and

thrust are separable for this case. When one varies quantities (a), (b), and

(c) discussed previously as available, independent variables, then the energy

disc may be an attractive model.

This section is closed by noting that a model has been proposed but

has not been developed.

EXTERNAL BU1NING; BASIC EQUATIONS AND SOLUTIONS

One-Dimensional Heat Addition

To provide a basis for comparison with subsequent sections, one-dimensional

heat addition will be briefly reviewed.

There are several approaches to one-dimensional heat addition. For unsteady

flow there is the self similar technique developed by Sedov. (6) We consider

steady flow only here. There is the famous solution for constant area heat

addition, i.e., the solution by Rayleigh. Rayleigh flow is discussed in most

gas dynamics books. (7) When there is simultaneous variation of area and heat

addition, the techniques outlined in the Princeton Series, Volume Ii, are

applicable. ( 8 )

(9)The influence coefficients developed by Shapiro and Hawthorne will be

discussed here. Table IV summarizes the influence coefficients for heat

addition and isentropic flow with area change. The influence functions relate a

fractional change of a dependent variable, say M2, to a fractional change of the

independent variable, A or hT. So far as heat addition is concerned, the

22
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Table IV. Influence Coefficients for Area Change and Heat Addition

dA dhT

2 +i - M2 i-MdM2  -2'1 * jM)1 + YW'

S2 1 Mi 2

U 
1

p- - M
2 I-M

dT

T _ M42 1 M2

-- 1

p 1 + M2  1

O4
P2

dF
20

p

velocity, u, and static pressure, p, change as they would flow into decreas-

ing area. For u and p, heat addition and area variation produce the same

result.

For imconfined flow with heat addition, there are some analogies between

the flow due to a particular body shape and the flow due to a given distribution

of heat addition. These analogies, which are limited in scope, will be pointed

out as they arise in subsequent discussion. The fact that heat addition and a

23



body may influence the flow the same way may be understood using the du/u and dp/p

influence coefficients.

The influence coefficients are the first terms in a Taylor seies expansion

of the dependent variables in terms of the independent variables. Many of the

results of linearized heat addition in an unconfined flow can be related to

influence coefficients. This statement is applicable, for examble, to heat

fronts and combustion fans.

Linearized Equations for Combined Mass and Heat Addition

The equations of motion for steady flow with heat and mass addition are as

follows:

Continuity div(pl) = m (8)

Momentum P+ u 0 (9)

2
Energy div P (h + = Q (10)

In the preceding equations, m is the rate at which mass is added per unit

volume. Likewise Q is the rate at which heat is added per unit volume.

To linearize these equations, one introduces perturbation quanities %.Qtch

are defined as follows:

p = p + p' ; p = P + p'

" "(U + u') + e + v +e (w)

When the perturbation quantities are introduced, the resulting equations are

Continuity p ut + Pv" + UPx = m (12)
x x

PU.,u p' = - mUM
Momentum U + Px (10

Py
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pt. 
am(

Energy *rl -- I 2 Q (14)

We have formulated a 2D planar flow so that w' = 0. To avoid writing

subscript w, we now drop it in subsequent equations. The notation with

subscript x means partial differentiation with respect to x.

Starting with Equations (8) to (10), one could obtain the linearized

equations appropriate for heat and mass addition in axisymetric flow. The

equations have been solved for mass addition (sources) but t for heat

addition in axisymmetric flow.

The solution for a source in two-dimensional planar flow will now be

obtained. Consider a row of point sources evenly distributed along the

z-axis. Axis orientation relative to the flow is shown in Figure ii. For

a point P(x - xl, y - y ), only the sources within the Mach forecone influence

poLnt P as shown in Figure 11. To find the potential in two-dimensional flow,

add up the sources along the z-axis from k to d. Points k and d are

illustrated in Figure 11. From the geometry of Figure 11
-- 2 22any)

Z d = (x - xI) tan 2 (y - 2 (15)

Integration of a row of point sources yields the potential

0(xy90) d (16)2 d

This integrates to

;A 2 5
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MACH FORECONE

(ONLY SOURCES ALONG THIS Z
PORTION INFLUENCE POINT P

FIGURE I1. POTENTIAL FOR A LINE SOURCE IN SUPERSONIC FLOW.
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$(x,)- -- sin "  (17)
(x- - 2(y _ yl) 0

Inserting the limits gives

$(x,y) = - (18)

The potential is a constant. Think of a series cf Mach cones with apex

at the z-axis. Upstream of these cones, the potential is zero. Downstream

of the envelope of Mach cones, it is constant. One can represent this by

0(x,y) - % (x -Xl) ± (y - yl)] (19)

where I is the uni, -, function. The velocity components are, for a unit

source strength,

U x [8rx xl) ± (20)

and

Sx- ,) t(y - y, (21)

The (+) sign in front of P gives right-running waves, whereas the (-) sign

gives left-running waves.

The solutions for a heat source in supersonic flow 
are(10 )

u' = - ( -1)q 6(x - y) (22)

U7 = - - y) (22)

V= (-'- - 6( - y) (24)

2ap

P ( -_ 2 6(x -y) (Y 1)q 6(y)I(x) (25)
2a P a2U
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One can verify that there are the appropriate solutions when m 0 and Q / 0

by substitution into Equations (12) to (14). The second term in Equation (25)

is a wake. Pressure in the wake is the ambient value, arid the velocity

returras to freestream value. The solutions in Equations (22) to (25) are

valid for all x and y including the source point x = y = 0. The symbol q,

which has units heat/(length)(time), will be discussed shortly. The line heat

source in a planar f2low is illustrated in Figure 12.

Similar solutions can be written for the case of mass addition; these are:

Um

u, = - 6(x - y) (26)
v' ry) (2')

p, =re" 6(x - F:r) (28)

8 (x - py)
P I = 21PU (29)

Substitution of Equations (26) to (29) into Equations (12) to (14)

indicate theee are solutions except at the mass source point x = y .

With Equations (22) through (29), one has solution for volume distribution

of heat and in regions where m = 0. This is adequate to describe planar

bodies with adjacent heat addition zones.

Volume Heat Addition

Since the heat may be added throughout a volume rather than a line source
(the z-axis in Figure 11), it is worthwhile to formulate heat as a volume

release. Define, as in Equations (10) and (14)

heat

(;Panrea)Tec)
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FIGURE 12. SMALL PERTURBATION HEAT SOURCE IN A SUPERSONIC
FLOW.
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Then we define

heat
q q (span)(sec)

q = Qdxdy

Another area element may be better than dxdy. Some element with its sides

parallel to a Mach line is preferred. We think of Q Q(x,y). Figure 13

is a series of drawings illustrating the variables.

To get heat per unit span

IL

H = xdy = (o)

0 0 if Q = constant

Heat released in the complete volume is 1 = Hs.

hec heatsee (span) ( ime)

A

Now to tie into the 2D flow equations, we use Equation (22) as an example,

I~~ ~~~ u - -) (x - y) )

2YPP

At a point on characteristic, u' resulto from a source on that same

characteristic. If there is more than one source on that characteristic,

one adds the influence of each.

(- l)(q, + q2 )
Us 2u, = 6(x - ) (12)

For many heat sources, in fact n heat sources,

i= n
(y -I

U , 2 p ; q (x - ) ( 1 )



(A)
- heat release

(c)

-- L

~point 
for l'

0
0 

L 

p r

S(B) 
heat sourcej
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(D)

point P

(E) rA

FIGURE 13.

I LL USTRATION OF QUANTITIES RELATED TO SPECIFICATION OF HEAT RELEASE.
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The equation for u' is correct if one thinks of

heat
q, = Qdy = (span)(length)(sec)

when the heat source is distributed in the volume. When heat sources are not

discrete but are distributed, then one wants to integrate along a characteristic.

Let s be distance along the characteristic. We express qi in terms of Q and ds

qi Q sin p ds = dq (3)

The perturbation velocity is

u,' - l Qvsin ds= Q(xy)ds (5)
2yps 2yMp J

0 0

Since s,x,y are related quite simply

x-- s cos )' y = s sinu, x= y

one can integrate u' several ways:

sy

sin PfQ[s cos p, s sin P] ds or f Q(py, y)dy

0 0

(36)
x

or fo Q(xx/p)dx/F

Referring to the region bounded by 0 < x < L and 0 < y < in Figure 13(b)

and for case Q z constant inside the region

32



!- sin )k =d- : .g" x - (tan u)pa (7
fsinQi s Qt= Qd 0t dXx (37)

0 0 (ta

The pressure perturbation would be

, p, (Y l)M t
= YaVp (38)

In terms of Q(x,y), the perturbation quantities are

S

U- (- Q(x,y) sin ds (19)

v= Q 2 p ! (x,y) sin ds (40)0

IaJ Q(x,) sin i ds (41)

0
sC

(Y - l)M QO (x,y) sin. ds a -lx Qx.''Y '

2a aU f

I(x - x')dx'dy'

The wake is given by the integral abovej as an example for x > xi + L

x'= x +L

i

where the geometry is sketched in Figure 14.
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FIGURE 14. GEOMETRY OF WAKE DOWNSTREAM OF A HEAT AOOXTION ZONE.
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For a point inside the heat release region

x1 = xI

PW1AKE(I) 1 2 1  fC~~~~ (44)a u f
i' = Xi

The symbol xI is defined in Figure 14.

Heat Addition at a Plane; A Heat Front

Consider a distribution of line sources which form a plane at angle e

to the flow, as illustrated by Figure 15. Terminology similar to that

in supersonic wing theory, i.e., subsonic and supersonic "leading edgt.," 4

employed to identify two cases, 6 S P or Mn 1. The normal Mach numbei- Mn

is M sin 9. Since sin j - l/M, the normal Mach number is

M = sine9 (45)n sin )

You can see from an examination of Figure 15 that the heat source can influence

flow upstream if Mn < 1. However, if M n> 1, the heat source does NOT influence

flow upstream contrary to statements made by Tsien and Beilock. (10) Also it

is apparent that point P is influenced only by right-running characteristics for

Mn < 1, whereas P is influenced by both families of characteristics for Mn > 1.

The perturbation velocities for a heat front will now be obtained.

Using Equation (22) and integrating along the heat front, the formula for u' is

u'(x,y) " - FS[(x - s coo 9)- (y-S sin 0 ds (46)

where a is distance along the heat front. Consequently,

-4
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(47)

I;I

Since it i s ao re tha s/a -cos U-sin g hsfc2yp -ln-

-4p ( sin e - cos 9)

Since = -,it is also true that = 1/tan p. Using this fact

For left-running waves, p is positive; and for right-running waves, p is

negative. For a subsonic "leading edge," 9 is less than p. Downstream of the

heat source for M4 <1I, Equation (48) indicates u' will be negative; upstream
nd

of the source u' will be positive. In addition

juj I (for M < 1)

where subscripts u and d indicate upstream and lownstream respectively.

For a supersonic "leading edge," which is illustrated on the right-hand

side of Figure 15, the left running Mach wave gives a uL which is negative.

The right-running Mach wave gives a uA which is also negative but which is less

In absolute value than uL. Subscripts L and R denote left- and right-running

waves. Consequently,

ud =u <" (0

Now let's look at v'; from Equation (23) one obtains for this case:

00

v(Xy) 2p x - s cos ) -(y- s sin 9 ds (49)

CIO
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Integration of the 6-function yields

v1 - (x"z-1) sinp (50)
2yp sin 9 - cos 9 2yp sin (0 -)

For the case M < 1, v' is negative, and v' is also negative.
n u d

Furthermore

IV1~ (for Mn <21)

For thu case M > 1, v is positive while is negative. In add ,ion

v - vL1 - Ivii >0 (for Mn> 1)

which means the flow is turned toward the line source much the same as an

oblique shock wave. For M < I, the flow turns away from the heat front.n

A natural question is, "Is there any special direction to the

perturbation velocity vector?" Let vr be the resultant perturbation velocity

vector. It is given by

-tan jisin ji tan .is'in sin 1in
j-p +a 'e Ci -s 7n )

e- sin( - P) sin( )ey in(g p) sin(9+p) (

The algebraic signs are correct for the case Mn> 1 which means 9 >p. The

symbol C equals (y - l)q/2yp. Let a be the angle of the perturbation
velocity vector relative to freestream direction. Then

sin uA sinE
tana =sin(5 - 17 sin(G +7 (2

tan a tan g sin g tan sin (52)

sin(@- ) sin(9 + )

Manipulation of Equation (52) leads to

1 sin_ ncosO 1
tan tan p cosp sinG - tan

The conclusion from Equation '51) is that the velocity vector is normal to

the planar heat source. Since this is so, one can transform the supersonic

case of heat addition to an equivalent 1D problem. To do this, one uses

38



u _ (54)

where u U sin e. Proceeding by substitution of components iLom

Equation (51) into Equation (54) gives

du h hTd T(55)

U sir, 1- c Tn p

which is precisely the influence coefficient result when properly interpreted.

See Table IV. For a subsonic "leading edge," the velocity increases. This

means that the flow is turned away from the planar heat source for M < 1n

(analogous to Prandtl Meyer expansion) and toward the planar heat source for

Mn> 1 (analogous to oblique shock wave).

As has been demonstrated, one of the ways of adding heat which lends

itself to analysis is by means of a heat front. The example chosen by

eiok(10) (11)
Tsein and Beilock (I  was a heat front. Oswatitsch considers other

aspects of heat fronts.

Heat addition at a front is comparable in complexity to linearized heat

addition. Combustion is a volume phenomenon. However, if the length of the

heat release region is much less than a body length, a front is a reasonable

approximation. Detonation is a heat front of a very special nature. (12)
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A heat front with a subsonic leading edge located next to a wall will be

preceded by an oblique shock. The oblique shock turns the flow away from the wall,

ana the heat front turns it back parallel to the wall. Recall that for a subsonic

leading edge the heat front can influence the flow upstream. The corresponding changes

in pressure are shown. The net change in pressure is positive although the heat

front decreases pressure.

A heat front with a supersoxiic leading edge will be followed by an expansion

fan if the front 's adjacent to a straight wall. Once again the net pressure

change is positive. The heat front turns the flow away from the wall, and the

fan redirects it --,o as to be parallel to the wall.

Adding heat to a supersonic stream decreases the Each number. When sufficient

heat has been added, the normal component of the Mach number downstream of t*e

heat front, Mh2, will become unity. The amount of heat required to make Mn2 = I is

known as "critical" amount of heat. With a heat front having a supersonic leading

edge, heat can be added until Mn2 = 1. If more heat is added, the flow illustrated in

Figurel6(b) changes to that shown in Figure 16(a). The oblique shock decreases

the flow Mach number changing the leading edge of the heat front from supersonic to

subsonic.

Adding heat to a subsonic flow or a heat front with a subsonic leading edge

modiftes the flow upstream. One zannot specify the flow immediately ahead of the

front. Critical heat addition does not have the same impact in the subsonic case

since the flow upstream will be modified to adjust to the large heat addition.

.A detonation wave can bo thought of as a shock wave followed by a combustion zone

or heat front. In Figure.10a) if the oblique shock and the heat front had the same

angle, it would be an oblique detonation wave provided the Mach number and amount of

heat released were correct*
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FIGURE 16. HEAT FRONTS AND C'OOMBUSTION FANS.
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In the Prandtl-Meyer expansion, conditions are constant along a

characteristic. Centered combustion fans are possible with conditions

constant along a ray. However, the ray is not a Mach line, and the

normal component of Mach number need not be unity. Combustion fans could

occur in subsonic as well as supersonic flow.

If Mn, the normal component of Mach number, exceeds unity, the fan will

turn the flow away from the wall like a compression. This is illustrated in

Figure 16(c) on the left-hand side. If Mn is less than unity, the flow would

be turned downward as shown in Figure 16(c) on the right-hand side.

Starting with the continuity equation in cylindrical coorainates (r,p,z)

and setting 8( )/8z = 0 and 8( )/ar = 0, one can derive the continuity

equation for a combustion fan. It is

dw2  dtnp
V1  dp + d (56)

The velocity components are illustrated in Figure 17. Heat addition does not

cause an irrotational flow to become rotational. One additinnal equation is

the condition for irrotational flow which is

dw,

The rate of heat release controls d'tnp/dP. One simple combustion fan occurs

for dtnp/dp = constant. For this case, Equations (56) and (57) can be

readily integrated.

There is a particularly interesting expression that can be derived for

the pressure coefficient associated with a heat front in hypersonic flow.

Consider a heat front at angle 9 relative to the main stream. The velocity

components and angles are illustrated in Figure ?8. The momentum equation is
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REFERENCE DIRECTION

FIGURE 17. GEOMETRY FOR COMBUSTION FAN.
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FIGURE 18. DEFINITION OF ANGLE3 AND VELOCITY COMPONENTS.
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2 2
+ (58)p Plul P2 2u2(

which can be rearranged, since from continuity pUl u p2u2

22I.P2 - Pl ull -22 lu'u - u2) (59)

From the geometry illustrated in Figure 18

w2  uI -u 2
_ (60)

sin(2 - 9) sin6

Noting that UI  wI sin 9 and combining Equations (59) and (60) leads to

= tan 9 sin5 (61)

If = M2 sin 2 >> 1, heat addition has little influence on w or p. Hence

w, w2 . For hypersonic flow Equation (61) becomes

p2 - 2 P = 2 (O 1wtan 9 sin5

and the pressure coefficient is

c = 2 tan 9 sin6 (62)
p

This can be compared with the Newtonian expression which is

2-c 2 sin b (61)
p

Equations (62) and (63) provide sufficient tools to explore the external

burning ramjet shown in Figure 19. Angle 5 is shown in the top figure and

applies to Equation (63).

Heat Addition and Vorticity

In this section it is shown that heat addition does not change an

initially irrotational flow to a rotational flow. The curl of the velocity

vector should be zero. For subsonic flow, one uses the equations from Tsien

45
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FIGURE 19. EXTERNAL BURNING SCRAMJET,
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and Beilock (10; and for supersonic flow, one uses Equations (22) and (23).

(LV' I ut)
cur ve~ - y (64)

Substituting Equations 22 and 23 into Equation (64) yields

curl v e ~z i Q[ 2n(x -py) (x - y + Yp, ~)-[ 2np(x - y) (x -y (65)

Recall that M2 = 1 - 1. In the above analysis, 5 has been represented by

(x - Py) - n 72 exP[- n(x - py)2] (66)

Since curl v vanishes, one concludes that heat addition does not generate

vorticity.

Mass Balance with Heat Addition

To gain additional insight to diabatic flows, it is worthwhile to examine

some simple flows using familiar methods. One such case is a mass balance.

Consider a heat addition region as shown in Figure 20 with a control volume.

Half of the control volume car. be used for the mass balance. This half has

width w. Writing a continuity equation for mass flux across control volume

yields

p uw = (p + p,)v'(L - Pt) + 2(p + -')7,p1 + p,,u,(w - t/2) + (p. + p)u t/2 (67)

where pl' and v' are averages of perturbation quantities along Pt illustrated

in Figure 20. The density perturbation in the wake is pl. Equation (67)
w

reduces to

pvL -pwuo/2 (68)

when second order terms (e.g., p'v') are neglected. This can be rewritten as

47
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S w
p(69)

Substitution of Equations (40) and (42) in (69) gives an equality, as one

expects.

kEXTERNAL BURNING; THRUST MINUS DRAG

Drag--Subsonic and Supersonic

In subsonic flow of a perfect fluid around a body, there is no force on

the body, eithbr lift or drag. Motion of a body through a fluid would require

work if there were a drag. This energy would appear in the fluid. For a

perfect fluid, the perturbations in the fluid decay rapidly at large

distances from the body. If the body has been moving for a long time and if

there were drag, there should be significant motion of the fluid at large

distances.

In supersonic flow, there is significant motion at large distances even in

a perfect fluid. The waves caused by body motion move out from the body eventually

decaying to sound waves. Far from the body, the flow consists of outgoing sound

waves. These waves carry away energy. Work overcoming drag su ilies the

energy.

Relation Between Flux of Entropy and Dag

It is well known (See, for example, K. Oswatitsch. ) that the flux of

entropy through a control surface can be related to drag of a body within the

control surface. To get a feeling for the extent of the waves causing drag, a

sample problem was worked. The results are shown in Figure 21.

Consider a 20° wedge at Mach 2, as shown in Figure 21. The wave geometry

is shown and has been calculated using the methcd of finite waves. Width of
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POINT A/b PERCENTAGE DRAG
1 0 25.2
2 5.0 39.3
3 8.7 53.9
4 16.4 692
5 378 99.0
6 179.

4,

A 4

FIGURE 21. FLOW FIELD NEAR A WEDGE AT MACH 2.
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the base of the wedge is b. The lateral distance to a point on the shock

wave is t. Distance t is illustrated. The flux of entropy in and out of3

the control volume (neglecting the wake) is equal to entropy jump across

the shock wave times the mass flux. The first expansion wave intersects the

shock wave at point 2. The w ie between points 1 and 2 accounts for 25.2

per cent of wedge drag. The shock wave between points 1 and 3 accounts for

39.3 par cent of the wedge pressure drag. It is necessary to go out 179

base widths to obtain 99 per cent of the drag.

The conclusion from this little study is that the waves are important to

great distances from the body. In axisymmetric flow, the bow wave would decay

more rapidly.

Linearized Drag Due to Waves

A wave is a mechanism whereby energy can be propagated. The energy takes

two forms in the linearized or acoustic case. These are flow work and kinetic

energy. It can be shown (1) that an integral over space of the flow work equals

the integral over space of kinetic energy. As an example, consider a half--

diamond airfoil shown in Figure 22. The airfoil is moved exactly one chord

length from position ABC to position DEA, and the undisturbed fluid is at rest.

This motion does work Dc where D is the drag and c is the chord. The work appears

as energy within the waves. Changes in the fluid motion occur normal to the

waves. The disturbance originating at A now appears at A', B at B', C at C', etc.

The motion within the wave below A'B'C' is due to earlier airfoil motion to the

right of position ABC. The work done by drag moving one chord length appears

within the volume, V, bounded by A'B'C'DEA. Consequently
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FIGURE 22. DRAG EVALUATION USING WAVE ENERGY.
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De 1f (u + U)2 + v2]dv (70)

V

where u and v are perturbation velocities. When there is heat addition, as

Illustrated in the lower part of Figure 22, Equation ('0) changes. The force

on the body is now thrust minus drag. Heat has been added. There is a

left-running wave, AG, which moves into the fluid above the airfoil. Energy

is added to the fluid bounded by ACG. Heat is added in a volume bounded by BFC.

Downstream of this region there is a wake. Note that in the region EAC'B' the

mass sinks cause u' and v' to be positive* whereas the heat sources cause u"

and v" to be negative. In region AC'B' the mass sinks decrease p whereas heat

increases p. The energy equation associated with the waves now is!
(T - D)C + (heat added) = f P[(U + u' + u) 2 + (v' + v1)2] dV

V
~(li)

+ pd(-) + (energy)dV + (energy)dV

V WAKE AGO

Equation (71) is more conceptual than quantitative. There are some questions

yet to be answered. Does the integral of flow ork equal the integral of

kinc'.ic energy for waves caused by heat addition? Incorporating heat addition

into the wavs increases complexity. Can this method of drag and throt

ation lead to useful results and new insight? These questions will be

'We use the notation that masssources cause perturbation velocities ul and v';
heat sources cause perturbation velocities u" and v".
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considered in the section 1Javo Energy Due to Heat Addition which f ollows

shortly.

Linearized Mumentiwn Relations

Ini two dimensions, x and z, ths drag formula in t~hree dimeipoions Is

simplified. It becomes

D- J(p pc)dz Jp(U +u)(U +u)d-wdx (72)

C C

The corresponding lift equation is

L = ~ p p)dx + )pw[wdx- (U + u)dz](3

C C

where C denotes a closed contour surrounding the vehicle or wing. For

small perturbations due to mass sources and sinks, the above equations

becoiie

D p uwdx + 1p JO [ 2U2 + w2jdz (74)

C C

Note that drag is due to second order terms, i.e., uw, u2 and w2  First

order terms drop out. For lift the small perturbation form is

L= -p,9 J (udx + wdz) pv ptr (75)

In a following section the equivalent formulas for L and D will be derived

for combined mass and heat addition. First, consider drag or thrust on a heat

addition zone.
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To illustrate the application of the heat addition equations, let us

calculate the thrust of a line source of length, 1, oriented parallel and

normal to the stream. Equation ("6) is taken from Chapter 7 of Liepmann

and Roshko; 15

D=- J(Pul)nkukdA- JPnldA (76)

In their notation x1 = x and x2 = y. The control volume is shown in Figure 23.

If Equation (76) is negative, one gets a thrust. Using the numbers for

surfaces in control volume:

D = - (pU)(- U)dA - f (pO - pAE)U2dA-

A1  Al

(U - ")(p0 - 'WAVE)(- l)(- v')dA - (77)

5

(U - u')(po- P'WAVE)(+ l)(vl)dA

A 6

The integral over A1 can be integrated. The integral over A. can be split

into two parts, and the part with p. can be integrated. Equations (22) through

(25) were derived dropping terms in second order in v'/U, etc. The integrands

of A5 and A6 reduce to pcUv'. Consequently, Equation " 1'ecomes:
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D pOO U2A + gwU2A A + WAKE)U2dA - 2f p.Uv dA (78)

A 3  A5A5

We now need expressions for p'WAKE and v', which we obtain from

Equations (25) and (23) respectively. Proceeding with p'

t

pI (x,y) (" - 1)9 6(y - y')I(x - x')ds (79)
S aWAKE U
0

where s is distance along the source; x and y, the coordinates where you want

to evaluate pwAKE and x' and y', the coordinates of an element, ds, of heat

source. When x> x', I = 1; since we are evaluating A -integral, x will be

greater than x'. Also ds = dx' for the case at hand.

C

PI F______WAKE(y) = (Y 2 l y - y') 2dx' 2 (y - y') (80)
a2U a2U

0

Substituting Equation (80) into A -integral of Equation (78), we get

2 WAY (_ - l)qt( y U2dy = (Y - l)QtU (81)

S 'FU2 dA ~ 2 ( - y y-2 81
A  J a 2U a 2

1 A 3 3

In a similar manner, an equation can be obtained for vt from Equatior (21):

t

v'(x,y) = I (X -l1)2q6 {(x -x') - (y - y')]ds (82)2yp

0

Substituting Equation (82) in A 5-integral of Equation (78) yields
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6( [(x - x') - (y -, Jt1dxtdx (81)
A5  0

The coordinate system is chosen so that the heat source starts at x' 0 0 and

ends at x' = . Also y' = 0. The coordinate of point c in Figure 23 is

(Py 5 ,Y 5 ), and the coordinate of point d is 5 + 'PY5 )" Consequently, the

limits of integration are as shown

PY5  0

A change of variable helps evaluate the integral; let z = x - py5"

( P) C 6(z - x')dzdx' = P.O pk (85)

0 0

The integral in Equation (19) is in the standard form as shown in the

Appendix so that it is readily apparent that it has value t. Now combine

Equations (78), (81), ard (85) to give

)-- ( - )t - 2 (86)a 2 
e

2
which vanishes since a = yp/p. Supersonic heat addition in an unconstrained

(no walls) flow gives zero thrust or drag.

Now look at the case where the heat source is of length t but normal to

the streamlines. This is illustrated in Figure 24. Equations (78), (79), and

(82) apply; however, ds is different as it the limit of integration. Put

the origin of coordinates at the center of the heat source. Equation (79) becomes
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f,2

PWAKE(y) = 6 (y -y')dy' (87)
a2U

-t/2

The A.-integral in Equation (78) becomes

f U2 5(y - y')dy'dy= ( T - 1)tu (88)
a2U a2

A-3  t/2

since the integrations over y' and y overlap over the region - t/2 to t/2.

For the perturbation velocity; the equation for v' becomes

v'(xy) = f (Y2Vp- I x - (Y5 " y')ldyt (89)

- I/2

where Y5 is the coordinate for plane A5. The A5-integral is

p OUvIdy = A5 - I)-_" (y5 - y')]dy'dx (90)
A 5 A -5 /2

The limits of integration for x are F(y5 - t/2) to P(Y5 + t/2). To obtain a

standard form for the integrand, we must eliminate P in the 6-function. This

we do by letting z - P(Y5 - y') and dz = - Pdy'. Equation (90) is now

Sff (x z)dzdx OU y (91)
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The limits of integration for both a and x in Equation (91) are P(y5 - 1/2)

to P(y5 + 1/2). Combining Equations (78), (88), and (91), one finds[ a 2 -~ 2( 2L1tP.IJ0U) =0(92)

which is what we expected.

It is interesting to draw the streamlines in the vicinity of the heat

sources; see Figure 25. For the parallel heat source there is a conceptual

difficulty which has a resolution. The "stagnation" streamline* C goes

straight back since v' is an odd function and must be zero at y = 0. One

can think of a streamtube bounded by streamlines B and D. Continuing, one

can shrink this streamtub so that there is very little mass flow through it.

Yet the streamtube diverges at angle G. A finite amount of heat is added to an

infinitesimal stream yielding a finite angle 9. Strange! One avoids this

difficulty by using volume heat addition. The case of the heat source normal

to the flow is more easily digested. Streamlines F and J are acted upon by

characteristics of a single family. Streamline G passes through the heat

source into a region where it is influenced by both left-running (gives + v')

and right-running (gives - v') characteristics. In this region the streamline

is not deviated from its original direction. Streamline G then moves into a

region where only left-running characteristics act on it. It is deflected by an

amount 9. Finally G moves into the wake where it accelerates and assumes its

original direction. The speed along G is (U, U - 2u', U - u', U) as it moves

from region to region. Streamline H is in the plane of symmetry; as a result,

it does not deviate from freestrean direction.

*A body will stagnate the flow; however a heat source does not do so.
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FIGURE 25. STREAMLINES IN VICINITY OF PARALLEL
AND NORMAL LINE HEAT SOURCES.

62



S--

Wave Energ Due to Heat Addition

The model for determining wave energy due to heat addition is shown

in Figure 26. A heat addition zone EFGH is translated its own Length L in

time L/u.. Its new position is AFEL. The heat released is (h1L)(L/u.).

Since there is no force on the heat addition region, no work is done moving it

from EFGH to AFEL. The question of forces on heat addition zones was

discussed in the preceding section. All of the heat energy released must

appear in the waves and in the wake.

In the tima L/u,, the disturbance at J has moved to point K. The

disturbance at F has moved to B. The dashed lines AC and BD would be stream-

lines if EFGH were stationary and tne fluid moved by. The energy content of

space bounded by ANCEL is the same as that Ins"de FJIYHE. Part of the energy

added appears in the region ABDC. This is the wave energy. The remainder

appears in the wake in the region EFGH. From B to P, work is done on the

fluid to compress it. From K to D, work is done by the fluid as it expands.

The flow work cancels. We are now ready to write the energy equation.

htL2 2 (kinetic (nr energy in)
L2u = 2 in ABDC wake EFGH

The factor 2 comes from the fact that waves go both up and down in Figure 26.

The kinetic energy in ABDO is

L L cos )i

n., = dxdJ un sin p d dn (94)

x 00

where dx and dy have been replaced by a coordinate system x = ' and y =nL sin p.

The symbol u represents the perturbation velocity normal to the wave. It is

equal to
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FIGURE 26. WAVE ENERGY DUE TO HEAT ADDITION.
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u 2 + (95)
n

where u' and ';t are given by Equations (19) and (40) respectively. The

magnitude of v' has been plotted in the upper portion of Figure 20. Inserting

Equation (95) into Equation (94) and recognizing the functional form of v'

(and u') as shown in Figure 20, one arrives at

L
2KE in ABDO Iv'\2  2 rV

(2p~sin p cos 2 ) + kd + (u + v+2)1 j d (96)

The value of v' has been indicated in Figure 20. It is the maximum
m

perturbation velocity. Integrating Equation (96) yields

I2KE in ABD 2 (2 +V1 + (Ul2 + 1)(
Lp sin p cos . ; m m m

(9'7)

=(U12 + Vm2)(L-

The energy in the wake is

(energy ine ,

wake EFGH) p w apd T0  (98)

The distance FG is the length L. According to small perturbation results,

the wake has freestream velocity and pressure but reduced density and increased

temperature. Knowing these facts and using p pRT, Equation (98) becomes

(energy in)= cp TLw (99)

k qake EFGH) wLp

The density perturbation in the yake pt can be obtained from Equation (44).

Substituting Equations (39) and (40) into Equation (97), substituting

Equation (44) into Equation (99), and combining the results in Equation (93)

yields
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IL2  p L j2y -c (100)

U 2yp ja u.

WAVE ENERGY WAKE ENERGY

From Equation (100) it is apparent that the energy appearing in the waves is

second order. The wave energy was based on u'2 + V1 which is second order.

The wake energy reduces to QtL 2/u,. If Equation (100) is to be an equation,

the wave energy must be neglected.

There are some important conclusions from this exercise. First, the

wave energy is second order. Second, most of the energy due to heat addition

appears in the wake. Energy radiated away by waves is small compared to

energy deposited in the wake.

If one ex&mines the linearized momentum equations in two dimensions, as

given in the section, Linearized Momentum Equations, one finds drag is related

to an integral of second order terms. As shown in the discussion of Figure 21,

drag can be related to the waves generated by motion of a body. A conclusion

is that wave energy resulting from either drag or heat addition is second order

in the perturbation quantities.

Control Volume A roach to Thrust Minus Drag with Heat Addition

As an example of a two-dimensional planar flow, examine Figure 27. A

half diamond has a region of volume heat addition indicated as a shaded area.

The dotted lines outline an image heat addition region above the shaded region.

Part of a control volume boundary is shown as a dashed line. Mach lines are

drawn from the body to the boundary of the control surface. Below the boundary

are plotted the perturbation quantities for that location on the boundary. At

the very bottom are the pressure, source strength, u' and v'. These are constant

to mid chord and then switch to values opposite in sign.
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The perturbation quantities due to heat addition are plotted about the right-

hand side of mid-page. Heat addition increasei pressure, slows the flow, and

deflocts it downward. If the two plots were to scale, the positive pressure

increment due to heat addition would exceed the nog-atve increment due to flow

expansion (mass sinks). The body would have positive thrust minus drag.

The magnitudes of the perturbations due to heat addition are proportional to

the length of the characteristic (Mach line) passing through e heat addition

regions both real and image. Note that p', p", u' Ul, v', and v are of

opposite signs.

Let's look at drag and lift contributions due to the portion of control

volume shown. In Equation (72) dz is zero. Hence the drag contribution

D= f (U + u' + u")(w' + w")dx (101)

Multiplying the terms yields

D = J (pUw' + pUw" + pu'w' + pu tw'I + pu"w' + Pulw11)dx (102)

1 2 3 4 5 6

The following summary gives the contributions (+), 0, or (-).

Term 1 2 3 4 5 6

0 to c/2 (-) 0 () 0 0 0

c/2 to c (+) (() (-) (-) (*)

The integral of pUw' over a full chord gives zero; however, the integral of

pUw" makes a large thrust contribution. Terms 3 and 6 give drag, whereas terms

2, 4, and 5 give thrust.
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Lift is obtained from Equation (73). Once again for the segment of

control volume illustrated, dz is zero. The lift contribution becomes

L = f(pt + p")dx+ fp(w ' 2 21w' 1 + w" 2 )dx (103)

1I 2J 3 4 5

The following summary gives the contributions of the various terms.

Term 1 2 3 4 5

0 to c/2Z(+ 0 () 0 0

c / 2 t o e - + ' - - +

Tne pressure p' averages to zero, whereas p" gives a lift. The cross term

w'w" reduces lift.

To optimize the heat addition, the airfoil shape must be expressed

analytically. F at addition also needs to be described by some function of

x and z. Heat rolease need not necessarily be uniform.

Thrust from 2yce Point-of-View

The thrust due to a propulsion device is given by

F = 1(w - w,) + Ae(Pe - p. ) (104)

If one evaluates the equation at the Treftzplane, the pressure term may or

may not drop out. This is onn item which Oswatitsch (11) discusses. In

Equation (104), F is thrust,and I is mas flow rate of fluid which receives

a velocity increasi w - w, over the freostream velocity ww

Consider three flows as slcsn in Figure 28. Heat is added at stagnation

conditions and at some Mach number other than zerc. The pressures at the

exhausts are all equal, i.e., p,= p4 
= p2= P . The Mollier Chart which depicts
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FIGURE 28. THREE FLOWS WITH TWO DIFFERENT WAYS OF ADDING HEAT.
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the three flows is shown in Figure 29. it is apparent from energy conrsiderations

that1 2 1 2

dq +~ w (h -h'l)(1)
7)4 22

Continuing

12 w ' wdw dq (h- h') (106)2(w4 2~ h4  2'

Now

The slope of a p constant curve is

Olos

Combining Equations (106) and (1o8) leads to

wdw =dq - dh =do ~Lds (109)
p

The change in entropy of the flow is given by

ds (110)T
q

A subscript q is used to '-icate this is the terrperatlure at which heat is

add ed. Equations (109) and (110) yield

wdw =d'~l -)(11

If one compares flow (a) with flow (b) sf. Figure 28, then the temrerature

ratilo in Equation (1] is T.)/r T2. If one compares flow (a) with' flow (c), the

L6emreraiture ratio is T '/ tl. To have d4,> 0, one rust have T < T2 q
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FIGURE 29. MOLLIER DIAGRAM FOR HEAT ADDITION.
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As a numerical examplv, consider flight at M 0.9. Heat is added at

M 0 in flow (b) and at M2= 0.5 in flow (c). Enough heat is added to

accelerate the flow so 'hat M3 = 0.6. The same amount of heat is added in

flow (b). The results a i that w 1= 1.055 and w"/w' = 1.091.
4 2 2 2

Equation (111) is not usually applicable to supersonic or hypersonic

flow. The entropy change in the exhaust was attributed solely to heat

addition. In supersonic flow, shock waves cause entropy changes. Further-

more heat addition may alter the shock wave geometry.

Thrust and Drag in Various Flow Regimes

For subsonic flow, the pressure term in Equation (104) is zero. For

supersonic flow, the pressure term if evaluated in the Trefftzplane is not

zero; however, it is extremely small. To see that the pressure is not zero,

examine the flow illustrated in Figure 30. The entropy in the Trefftzplane

is greater than ambient; ds> 0. If dp were zero, then pwdw equals - Tds

so that dw < 0. Entropy is related to p and T by Tds = cpdT - dp/p a dT.
p p

Consequently dT > 0. From p : pRT, it follows dp/p < 0. The continuity

equation pwA must be satisfied. As shown in Figure 10, the streamtube area A

does not change significantly. The changes in both p and w cannot be negative

and still satisfy continuity. If dp > 0, then dw continues to be less than

zero and dT > 0. Also dp/p > dT/T. Consequently dp > 0.

To account for the drag, the area A must be quite large. (See Figure 21.)

The streamtube influenced by a propulsion system will be small as shown in

Figure 30. It is an area of approximately A in Equation (104). The pressure

at the Trefftzplane is due mainly to drag and is spread over area A, albeit not

uniformly. The pressure term in the thrust equation is applicable to area A
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K-%TREFFT ZPLANE

PRFqSURE MUST BE
STREATUBEHIGHER HERE

FOR PROPULSI
OF AREA^, A

HYPERSONIC

FIGURE 30. DRAG IN DIFFERENT FLIGHT REGIMES.
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Since thrust equals-drag, the pressure term will be of the order of Ae/A. It

can be neglected for subsonic, transonic, and supersonic flow.

For slender bodies in hypersonic flow, dw/w is small. If the thickness

ratio is T= (thickness)/(body length), then dw/w is of the order T2. Heat

addition also has little influence on dw/w, a fact that can be verified by

examining Figure 7.3 in Volume I of A. H. Shapiro's The Dacs and Thermo-

dynamics of Compressible Fluid Flow. In hypersonic flow, heat addition

causes large charges in pressure and static temperature.

In hypersonic flow, the shock waves are close to the body. The drag is

concentrated in a small area, A,); see Figure 30. Thrust pr-Icing devices

would influence an area comparable to AD. Consequently, the pressure term in

Equation (104) must be retained as a significant factor.

One can calculate forces on a body by suitable integration of pressure.

Pressure in excess of ambient on forward-facing surfaces causes drag; define

ts as pressure drag, D p Pressure less than ambient on r,--ward-facingp

surfaces causes drag; define this as suction drag, Ds. The ratio D s/D is

shown in Figure 31 as a function of Mach number. Suction drag is very

important in subsonic, transonic, and supersonic flow. However, as M

becomes large and enters the hypersonic region, D becomes insignificant.
s

In fact, Newtonian theory assumes amblent pressure pcois zero with the result

D =0.

s

A propulsion device will increase pressure on rearward surfaces as shown

in Figure 31. Heat addition must increase pressure so that the area under the

curve labelled "with heat" equals the area under the curve, D . In supersonicP

flow, the thrust device simultaneously cancels a large D and balances D .
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In hypersonic. flow, the thrust device does tho same thing except that in

hypersonic flow D is negligible. Heat addition in hypersonic flow balances
5

D but counteracts only an insignificant D) . This has implications con-p s

cerning propulsion efficiency.

One more point is that in hypersonic flow D is the major dr.g con-

tribution, and this can be related to the bow shock wave. In supersonic flow,

D, is important also so that the waves originating at the rear end of the body

or at the rearward-facing b irices are of equal importance to the bow shock

wave in calculating drag.

Contrast in Thrust at Supersonic and Hypersonic Speeds

Consider a body immersed in a flow as shown in Figure 30. The force on

the body in the direction of the freestream is

F(U =c 2)+ (p - p(112)

A

If there is no energy addition and if A is the area of the large streamtuba,

F equals D. (It has been assumed that expansion waves have made pressure

increments negligible along the streamline from a to b in Figure 30.) If there

is energy addition to the stream and if A is, once again, the Trefftzplane in

Figure 30, Equation (112) yields thrust minus drag. If one evaluates

Equation (112) using the small streamtube in Figure 30 with flow in, then F is

approximately thrust.*

*It is not, of course, possible tu separate out the thrust accurately using
Equation (112). If it were possible, how much more simple the propulsion
integration problem would be.
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The continuity equation is, neglecting fuel added,

A (pu - p.u)dydz (11)

A

The energy equation in integral form is

2 2 2

0 =u(h + p + u., + q dydz (114)

%A

In Equation (114), q is the heat added per unit mass, and v is the component

of velocity normal to the freestream. By combining the preceding equations

in the following way

um
(u x thrust) + (h + q x continuity - energy u F

one obtains

u2 2

uF Pu(hC- h + q) + u (p p.) - (115)

Substituting h = e + p/p into Equation (115) yields 2 2]
uWF= u q - p(u-u) -1u dydz (116)

There are three terms in the integrand of Equation (116). Th6 term pu(e - e,)

is the flux of energy thrown away in the jet. The term pu[q - (e - e.)] is the

energy converted to work or jet kinetic energy. The term p(u - u,,) is the flow

work, and the last term in the integrand is the flux of kinetic energy of the
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jet relative to the stationary surroundings. The left-hand side is the rate

at which the thrust does work in overcoming drag.

For transonic and supersonic flow, all terms are important. In hypersonic

flow, (u - u.)/u., v/us < 1. Changes in velocity due either to shock waves or

heat addition are small. However Ap/p , AT/T,, or Ap/p are of the order of

unity or larger. Based on these comments, one can neglect the jet kinetic

energy in hypersonic flow. In hypersonic flow, the term p(u - u.) varies as

2
l/M as ' .ll now be demonstrated. Rewriting the term as

p~~~u -u)=pu(1 + LA.f)(RL-1

one can introduce the Mach number dependence. In hypersonic flow, Ap/p. K2

where K is the hypersonic similarity parameter TM. The velocity perturbation

2
varies as T as discussed previc .sly. Substitution of these quantities into

the flow work term yields

P.U. 2 2
p(u - u0 ) (l + K )(K 2 ) (117)

M2

Compared to the heat additln term in Equation (116), the term p(u - u,) is

small for Y >> 1 and K = O(1).i Equation (316) reduces to

F = 'pq - (e - e,.)]dydz(18

A

which is valid for M >> 1 and K = 0(1). In hypersonic flow, Equation (118) tells

us that the thrust is simply due to the heat added less the amount of internal

energy thrown away in the exhaust. In supersonic flow, it "s more complex; see

Equation (116).

*Requiring K 0(1) id not a severe restriction.
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APPLICATIONS OF EXTERNAL BURNING

In thr. preceding sections some of the analytical tools for understanding

external burning have been discussed. It is worthwhile to look at some

possible applications of external burning. Four applications will be examined

briefly in the following section; these are forces on a planar airfoil due to

heat addition, transonic boattail and base pressure alleviation, base pressure

modification in both the planar and axisymmetric cases, and spin recovery of

aircraft.

Before discussing the applications, a mode] for pressure rise due to heat

addition near a flat plat will be discussed. This model uses some of the

results from EXTERNAL BURNING; BASIC EQUATIONS AND SOLUTIONS and from

EXTERNAL BURNING; THRUST MINUS DRAG. The model is a refinement of a similar

model by Billig.'(6

Model for Heat Addition Adjacent to a Flat Plate

Figur? 32 illustrates the geometry. There are three zones. Zone I is

the freestream which is supersonic. Zone Ii is the heat addition region

separated from Zone I by a heat front. Zone II is bounded by the wall, heat

front, and streamline c Zone III is downstream of the oblique shock com-

prising the region below streamline c. The heat addition turns the flow by

an angle 9. The streamline deflection angles and static pressures in regions

II and III must be equal along stsreamline c. In the following development,

terms in () are dropped as being ncgligible.

The deflection angle is approximately:

x
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The continuity equation is

plu y1 - p3ulyI = I U3 (yI + Ox) p2u2y2  (120)

Across the oblique shock there is a pressure increase equal to

P2 - p1  _______= = (121 )

Equation (121) defines P. Define Q' as the heat addition per unit mass of

air flowing in the streamtube defined by streamlines a and c. The energy

equation is

cpTn + c : TTI (122)

or as

cTT2 + = cTT, (122)

(15)
Using Equation (7.14) from Liepmann and Roshko, one can derive the

following momentum equation

2 2 I
P2 u 2 y2 * 3u 93  - p2 y 2 + p3y3 - p2Ox 0 (123)

Combining equations (119), (120), and (123) yields

P2u2y2 (u3 - u2) + (pI - p2)(y2 + fx) = 0 (124)

A solution exists for u, = u2 and p3  p Let's examine the consequences

of that solution. From the continuity equation and equation of state

P)2 u2 Y2 p Iu Iy3
p y (125)2  T

Since u u2 and P3 = P2 , this reduces to

T (126)
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The energy equation becomes

12 12
cpT2 + u 2 + Q2, = CpT 12

or (127)

CpT2 4-Q23 
= cpT3

since u I U2. From Equations (126) and (l2')

Y3 "" Y2  Q23  (128)Y2 CpT

In the notation of the influence coefficients of Table IV, Equation (128)

can be rewritten as

dA d hTd- , c- (129)

P

In view of the equality expressed by Equation (129), the influence

coefficients give the result dp/p = 0 and du/u = 0.

The heat added by the heat front must increase pressure in the

streamtube a-c by an amount equal to pressure rise across the oblique shock.

Using this fact

dp, yM-Q_ y 2(a

-.= (130)

Combining Equations (119) and (128), the heat added in Zone I! is

tt -cT2Qx/y1  (131)
C 1

Q'I = P XY
The difference between T IT and I is the order of 9. Hence

SCTlQx/y (12)
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Total heat added to turn the flow by an angle 9 is

Q11 3 Ql{2 * Q211(1
yl

The heat addition Q{3 turns the flow by an angle 9 and increases pressure

by the amount given by Equation (110).

Forces on a Planar Airfoil in Supersonic Fligh Due to Heat Addition

A problem which has been studied by several investigators is external

burni:g near a two-dimensional wing. One such study is that of Mager.(17)

Mager uses the linearized heat addition formulas, Equations (22) to (25), to

find the forces on an airfoil in supersonic flight with heat addition in

adjacent streamtubes.

Consider an area bounded by xi and xf in the x-direction and by a

surface and a parallel side at distance hi. See Figure 3. Within this area,

add heat Q. From Equation (41) the pressure at the surface is

_w = ~) J sin ds ( (134)
~a~p

Where does the factor 2 come from? There must be an image heat source above the

surface; otherwise, there would be a v with flow through the wall. Combining

Equation (134) and the definition of H [H is defined in the paragraph

preceding Equation (31) gives

pt (y - l)HhM

p h i(Ox - xi)a pp

In Equation (135) the quantity h varies from 0 at x= xi to hi at x xi + hi cotp.

It remains constant to x = Xft and then h decreases linearly to zero at

x xf + hi cot ;. This is illustrated in Figure 34.
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It is of interest to examine streamlines near the surface in the region

of heat addition; see Figure 35. The streamline passes along ABCD. It is

shown dashed with an exaggerated slope below. The streamline is straight

from the time it enters the heat addition region until it arrives at A.

Thi.; is so since aA = a'A. From A to B the right-running characteristic grows

in length relative to aA. Hence the streamline is curved from A to B. From

B to C the difference in length b'B - bB is constant; hence the streamline is

straight but at an angle to the mainstream. From C to D less and less of the

right-running characteristic passes through the image heat addition region,

and v' becomes smaller and smaller until finally the streamline is horizontal

at D. From C to D the streamline is obviously curved.

When the streamline is moved closer to the surface, as is the case in

the lower part of Figure 35, the deflection is considerably less. It is

obvious the" t- streamline o ',he surface will not be deflected since

aA = a'A = cC s. c'C - d'D dD for this case.

Compa. v4r 'os 25 and 15, 'ne gains some insight to the quandry

discussed in . .ection with Figure 25. When the heat addition is confined to

a mathematical line, as in the top of Figure 25, one has difficulty because of

streamline deflection near the source. However, when the heat is distributed

as in Figure 35, there is no problem.

Based on Figure 14 and Equation (135), it is apparent that one has in band

the tools necessary to study the forces on bodies due to heat addition, at

least in the linearized case. Refer to Mager's paper for performance of

an airfoil with heat addition.
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FIGURE 35. STREAMLINES IN REGION OF HEAT ADDITION.
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Alleviation of Boattail Dra f a LA Nozzle

In the Mach number range 0.8 < MO ( 1.2, which L Lhe transonic regime,

the nozzle gross thrust coefficient decreases :, ,-'ificantly. A factor which

i ~ma -" Ulehi transonic dip all the more i,portant is the corresponding increase

SIn tnx Lcansonic drag coefficient. Typical data for a pl-ug nozzle are shown in

SFigure 16., which is copied frnm the NASA Memorandum by Harrirgton.( 8  Part (&.)

is of interest here while par 1b) iv not Two fl ci phenomena cause the dip

in Cfg. One is the change i . 'g tr.:ust. 1,ignire 36(d) showi the behavior

of plug thrust. Another influe-%e is r ag identified in Figure 36(c)

as primary flap drag. Plug thrust. decres , and boattail drag increases in

the transonic region.

* Is there anything that can be dowe to correct the loss of the transonic

C fgb

Rabone ( 1 9 ) shows that by going to small plug angles, some of the loss of

plug thrust can be recovered, although there is still a dip near M = 1.2.

(18)Harrington uses a translating shroud that has a pronounced influence on

the boattail drag; however, the loss of a plug thrust partially remains.

An alternate approach is to burn externally on the boattail. The direct

thrust produced by high pressure on the boattail has very poor SFC. However,

S a flow interaction may occur which greatly inoreases thrust. This phenomenon

has been termed "wave trapping" by Fuhs. Figure 37 illustrates some essential

features of the interaction.

With heat addition on the boattail, the turning angle, 9, of the primary

nozzle flow is less. See the angle 9 in the region labelled (1) in Figure 37.

At the slipstream between the external flow and the nozzle flow, the expansion

Iq
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I

waves are ,lected as expansion waves without heat addition. These reflected

expansion res further reduce the pressure on the plug. The reflection is

IndIcater] point (2) in Figure 37. With heat addition, the expansion w' ve

io reflect as a conmpression wave increasing pressure on the -,lug.

In re n (1) without heat addition the press3ure is low, and the Mac:.

number Is -ge. The oblique shock (4) has a shallow angle. it is necessary

t match s stream pressure and flow direction for both the external arn

nozzl e fie. At the match corfition, the pressure rise across the ob] inue

:3oc is s' , giving large expansion o-' the nozvle p~rimary flow.

With t addition there are several changes to ,he flow in region (3).

1ressur j i: nc'eased. The flow is deflected to larger values of 9. The Each

number is : ered in region (0) due to heat addition. Either a weak or a str2ong

zolution of he oblique shock occurs. When the strong shock solutioa occurs,

the ext:.-n3i flow downstream of the oblioue shock is high subsonic. Expansion

waves refl- ed off the plug surface are not transraitted into the external

flow. Banc 4aves are trapped and are refL-cted as comression waves. The

compres- .r ,ves maintain a high plug pressure. Having looked at the inter-

z!tion qua1 itively, let us now examine the renults of a sample quantitative

calcu-a tion.

Wv.ve Trarl ir Quantitative Example

The san, geometry plug nozzle was selected as thet tested by Harrington.

f The primary ap forming the boattail was turned inward at an angle of 17 . A

freestrea, V- h number of 1.31 was chosen for the calculations; one reason for

selecting tf value of Mach number was to keep the external flow supersonic

t2hroughout n th, was no heat addition. A nozzle pressure rat io of 6 was
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chosen. According to Figure 5, at maximum thrust a higher NPR would be more

appropriate for M0 = 1.1. NPR of 6 is char?cteristic of cruise. In order that

standard gas tables could be used, the ratio of heat capacities, y, was set

equal to 1.40.

To obtain the flow field, a planar, two-dimensional, fin.te, wave calcula-

tion procedure outlined in Section 12.9 of Liepmann and Roshko was used.

When the zone of influence, as defined by Oswatitsch in Section 3. 25 of his

book, spans a distance small compared to flow radius, the two-dimensional planar

procedure can give quite accurate answers for local values of flow. Near the

plug nozzle throat, this procedure should give small errors; however, near the

plug tip, sizeable error should be expected. In addition, the change in wave

angle at the intersection of finite waves was neglected.

Results of the calculation are shown in Figures 38 and 39. Figure 38 shows

the wave geometry. The dashed line is the slipstream between the external and

the nozzle flows.

Consider the Er wave* separating regions (1) and (2). It is reflected

as an expansion wave from the plug, becoming an Et wave. The E wave reflects

from the slipstream immediately downstream of region (4). The value of the

reflection coefficient is + 0.8. This means the reflected wave is E with a
r

strength of 0.5 of that of the incident EL wave. At the next reflection from the

slipstream, the coefficient is f 0.12, which means continued expansion. At the

next reflection, the coefficient is - 0.08; there is an extremely weak com-

pression wave reflected from the slipstream. As a consequence of the expansion,

*E means expansion, and C means s compression wave. Subscript r is for a

.Eight running wave, whereas subscript L is for a _eft running wave.
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the pressure along the plug drops below ambient as shown in Figure ,9. Pressure

below ambient on the plug results in a negative plug thrust. Integration of the

, curve shown in Figure "39 yields: a value of the ratio, plug thrust to ideal nozzle

thrust, equal to - 0.097. Direct comparison of this calculation with Harrington's

data is not possible since all his tests at M = 1.31 were run with a shroud

extending partially over the plug. However, the vale of plug thrust has the

correct algebraic sign and the correct order of magnitude. In fact, it is

better than the correct order of magnitude; it is probably within 50 per cent

of being correct.

Now let's add heat to tle region near the boattail as shown in Figures 3"

and 40. The length of the boattail is i. The thickness of the heat addition

region is 1. The pressure increase due to heat addition is obtained from

Equation (41). Evaluation of the integral yields

(136)

Equation (116) can be solved for the heat addition h, BTU/volume second, and

then multiplied by IU.

h a ~pL BTU (1';7Ih (y - 1 )R (length)( se)( )

Mult.plication by 2 r, i.e., the circumference of the boattail, leads to the A

time rate at which heat is released. Let H be the heating value of the fuel

and fnfp the fuel flow rate. The heat release rate is given by

If H

The specific fuel consumption, SF0, is given by

= 6 00mf(19SFC = fl )
AD
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FIGURE 40. HEAT ADDITION REGION AT BOATTAIL.
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F. I
when AD is the change in boattail drag. The change in boatteil drag is I
A= Lp' sin a; the angle a is defined in Figure 40. Combining Equations

(138) and (i'9) along with the expression for AD gives

S 600a (140)
SFC = (y -)MH sin a

Inserting numerical values, a = 1000 ft/sec, = = 1.615, Y = 1.4,

M - 1.92, H = 20,000 BTU/Ibm, and a = 17 , and dividing by 778 ft-lbf/BTU

leads to SFC = 1.685 per hour. This is not particularly an exciting value for

SFC; however, for the strong solution the heat addition causes wave trapping and

significantly increases plug thrust. Note that SFC is not dependent on the

amount of' heat added. Less heat gives less thrust; more heat gives propor-

tionately more thrust.

Now let's look at the flow on the plug. To start the solution, the slip-

stream angle, 9, must be determined. Figure 41 is a plot of the curves showing

pressure in the external flow as a function of 9 and the pressure of the nozzle

flow also as a function of 9. The ordinate is pressure behind the oblique

shock (or downstream of the expansion fan for the nozzle flow) divided by

freestream stagnation pressure. There are two possible solutions; the strong

0solution was chosen for this example. Values are 9 = + 0.1 , subsonic externali0
flow, and a shock wave angle of 77° , Knowing 9 at the boattail-slipstream

junction pqrmits one to sta:t the solution using finite waves.

The wave geometry along the plug is shown in Figure 42. Since the

reflection coefficients at the slipstream have the value - 1.0, the flow

becomes periodic. The pressure along the plug, which is shown in Figure 43, is

everywhere !arger than ambient pressure. Integration of the pressure gives
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plug thrust 0.221

ideal nozzle thrust

If heat is added so that P'/PTo .027 on the boattail, the valte of' SFC

becomes less than 0.1 per hour ' In Equation (139), AD would now include

both the decrease in boattail drag and the increase in plug thrust.

I

!dv rpig icsino Numerical ExaMleIn the course of making a numerical experiment, there are numerous

i assumptions and decisions to make. Having completed this part of an analysis

of the influence of heat addition, one hs new perspective. The decrease in

boattail drag and corresponding are fairly straightforward

ions, and the value of SF0 = 1.685 is prcbably fairly accurate.

Considering the plug thrust increment due to heat addition, it is apparent

that a crossroads occurs at the point of taking a weak or strong solution.

See, once again, Figure 41. For this example, the strong solution was taken.

The strong solution gives a subsonic external flow at least initially.

That fact, of course, is the basis for wave trapping. Somewhere along the plug,

the external flow may accelerate from subsonic flow to supersonic flow. Once

the external flow becomes supersonic, the waves are no longer trapped in the

nozzle flow. ietermination of the subson 1 , flow and the change to supersonic

flow is extremely difficult.
I

if one had taken the weak solution instead of the strong solution, the

Ipressure distribution along the plug, at least according to current estimates,
would be qualitatively similar to Figure 39.

Changing NPR raises the curve labelled "NOZZLE FLOW" in Figure 41,

As the nozzle-flow curve is raised, the weak and strong solutions converge to a

I 10



single solution at the point of tangency. See Figure 414 (a) and 44(b).

This sir gle solution Is a strong shock solution. Increasing NPR beyond the

point of tangency raises the curve for "NOZZLE FLOW" so that an intersection

of the nozzle flow curve and external flow curve does not occur. The oblique

shock probably moves upstream to the point where the hoattail is formed.

This case is illustrated in Figure 44 (c). This would give high pressure on

the boattail but probably would give low rlug thrust.

Adding heat on the boattail has two influences: (1) Due to change in 9,

the curve for external flow in Figure 4. is shifted to the right; and (2) due

to increased pressure ahead of the shock wave, the curve is moved vertically.

This is illustrated in Figure 45(a). For large NPR and small heat addition,

there may be a solution as shown in Figure 45(c). Additional heat release

causes a shift in the curve making possible both weak and strong solutions.

See Figure 45(d).

The validity of the flow shown in Figures 42 and 41 is doubtful due to

the fact that the external flow probably accelerates from subsonic to super-

sonic. The strong solution may not occur. Consequently, one is skeptical

of the 5'O = 0.1. Additional analysis is necessary to obtain the plug

pressure distribution with heat addition. Both the weak solution and refine-

ment of the strong solution should be considered. One would expect 1.e heat

addiition to have a favorable influence on plug thrust.

Base Flow Froblem with Hfat Addition; Planar Flow

One application of external burning which has been investigated both

experimentally and theoretically is the modification of base yressure by heat

addition. The heat may be added in the base recirculation zone, in the viscous A
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FIGURE 44.
INFLUENCE OF CHANGING NOZZLE PRESSURE RATIO WITH FIXED HEAT ADDITION.

105



(a) INFLUENCE OF INCREASING HEAT ADDITION ON EXTERNAL FLOW.

PRESSURE DISTRIBUTION
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FIGURE 45.
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sl.oar layer, or a the inviscid flow adjacent to the shear layer. In 1967,

Billig prep. .! d an excellent summary of work to date. More recently,

Rt!brts -( 0 ) has -itten a survey on the subject.

It is worn: t ile to examine the base flow from an integral point of view.

Th~s is il!ustr. 'd in Figure 46. The control volume for the momentum theorem

is shown as das: lines with various _urfaces identified by a, b, c, . . . .

(ohk,1 5 )Using notation ni Chapter 7 of Liepmann and Roshko, the mo.r--tum theorem is
1N;

j Pui(an )dA + jpnidA 0 (141)

iI
On- car, add an in egral of ambient pressure over the control volume. For

base pressure i 1..

Uj Ul(Uln 1 + u2 n2)dA + (p - p.)nldA = 0 (142)

For the control v -.ume shown in Figure 46, there are four integrals.

f - (- d2 l (- f 2J(P • +  pu l)dA + (p p1)n1ldA + = 0 (143)

ab bc cd de

p- UA =+ - puldA + - p.)ndA (144)

a b de be cd

Heal addition in t. inviscid flow above the edge of the shear layer will alter

the shape of tne reamline from c to d. Changing streamline cd will not

inf]uence integrh' :)above. It is not readily apparent how integrals
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changes due to modification of streamline cd. Of course integral Q is

direct-ly influenced.

To gain some insight into the anticipated change in integial( , one

can use the continui.ty equation which is

p =d Pu AA (145)
%J

be de

Since integral over surface bc Joesn't change when streamline cd is changed,

this means the integral over de does not change. Any variation in integral

2
of Equation (114) is due to variations in p and ul; however, Equation (145)

tells us any change in p is balanced by a compensating change in uIl.

If the flow above the edge of the shear layer illustrated in Figure 46

is inviscid and if only one family of characteristics is significant, then

one can relate local streamline slope to pressure. To demonstrate the influence

of the shape of streamline cd on base pressure, a sample problem was worked.

This is illustrated by Figure 47. Streamline cd is used with the same lateral

displacement but with large turning angle in the upper diagram. The pressure

distribution along the streamline is shown in the graphs below each streamline.

From the curves one can evaluate the integral or equivalent series

I p pTA

1= -- dA = (146)
PT 

PT (

cd J

where AA is the element of area projected in the x direction. Numerical

values for I are 12.8 for upper curve and 21.7 for lower curve. Relating

Equation (146) to Equation (144) give3

1
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PT -)dA J (p p.)nldA PT(I 52.8) (147)

cd cd

The sharp turning curve gives a value of - 40PT for integral of

Equation (144), whereas the gradual turning curve gives - 3 .1PT. The base

pressure would be greater with the gradual turning streamline cd. It is

obvious from this analysis that one wants to maintain a high pressure on

streamline cd to increase base pressure. The heat addition zone shown in

Figure 48 will do that.
!A

Now let's return to the problem of how much pressure increase results

from the heat addition zone. Consider a heat addition zone located above a

slipstream as shown in Figure 49. This is a model to represent the flow

depicted in Figure 48. One replaces the lateral gradient in Vach number

with a slipstream having supersonic flow above and subsonic flow below. With

a lateral Mach number gradient, as in Figure 48, the characteristics reflect

from the sonic line in the form of a cusp.

A paragraph will now be used to explain the notation Er, Cr, EL, Ct.

The symbols E and C are for Expansion and Compression waves. The subscripts

r and I represent right running and left running waves respectively.

In Figure 49 the heat addition zone has a leading edge swept at angle p.

This gives a finite wave Cr. The pressure along the slipstream remains at

pressure p The waves from the heat addition zone and the reflected waves

turn the flow while keeping pressure constant. One way to describe this is to

say that the compression waves from the heat addition zone have cancelled the

expansion wavas which would have originated due to kink in streamline at

2. 111 4.'
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point . The turning angle is 29 at point 0 or twice the turning angle due
to C The reflection has effectively doubled the influence of the waves from

r

the heat addition zone.

The doubling of effectiveness can be seen in the following analysis: In

free unbounded space the turning angle is given by

v v-- (y - 1)hbtan 9 Uu = = 9p (148)
U + U U 2ypU

Equation (148) is obtained from geometry and Equation (40). From Equation (41)

( - aFhb (149)

where symbol b is defined by Figure 49. Due to turning of flow by an

amount 29, the increment of pressure decrease would be

2 (lco)

From the flow field analysis illustrated in Figure 49, the following

equation must be true

2p' + p" = 0 (151)

Combining Equations (148), (149), (150), and (151), one can verify that

Equation (151) is in fact true.

The mechanism for altering base pressure by heat addition in the adjacent

inviscid flow is apparent if one retraces the discussion associated with

Figures 46, 47, and 48. To summarize, the streamline cd must turn inward

toward the axis or plane of symmetry. Without heat addition, this turning

causes the pressure to drop. Sharp turning gives low pressure and low base

pressure; see squation (144) and Figure 47. Heat addition allows this inward

turning without loss of pressure as shown in Figures 48 and 49. Strahle's(2)

analysis suggests a new way to overcome base drag.
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Base Flow Problem with Heat Addition; Axisymmetric
The analysis of Fein ( 22) and Strhhle(23) considered a two-dimensional

planar geometry, i.e., wing-like objects. Projectiles are, of course,

axisymmetric. This section examines some of the changes to be ex;,ected when

the planar results are replaced by calculations for the axisytrmetric case.

(15)The method outlined in Liepmann and Roshko was used to calculate the

flow field for axisyn.etric heat addition. To verify the procedure for

handling the characteristics near the axis, a model of a spherical, radially

expanding flow was used. The results of that calculation are shown in Figure 50.

Since the flow is known, one knows Mach number at any radius R. The Mach

number calculated from the characteristics solution is shown in the third

column of the data summary in Figure 50. The Mach number based on the value

of R and flow area is shown in the first column.

A planar radial flow has an area variation linear in R, whereas the

2
axisymmetric radial flow has a R dependence for area. This can be represented

by
SAA = AR AA R

A R A R
Planar Axisymmetric

Partial solutions of the flow field with heat addition were obtained for

two cases. Both cases had an annular heat addition zone as illustrated in the

lower left-hand corner of Figure 51. The heat addition was sufficient to cause

a maximum turning angle of 9max - 60 at a radius of 6 inches. In the first case,

the heat zone was bounded by 6 ( r ,7 and 0 4, z (3. In the second case, it

I was 6 Kr <8 and 0 (z 1. For the first case, shown in Figure 51, M0 =
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m sin (
Using Area Point M -) 6 j9 r sin 6 r 5.7 sin7 In )ain

1.33 1 1.11 7.0 5 49 .44 .0872 .198 8.53 . 51 -!

1.33 2 1.33 7.0 15 49 1.32 .2585 .196 8.53 .- 51 -

1.65 3 1.68 1.46 10 34 .96 .173 .180 6.18 .595
1.65 4 1.68 17.46 0 34 0 0 .196 6.73 .595
2.05 5 2.09 28.91 5 28.6 .57 .0872 .153 4.22 .4'9

A

FIGURE 50. CHARACTERISTICS SOLUTION FOR AXISYMMETRIC
RADIAL EXPANSION.
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For the second case, M was chosen as 2, and the radial extent of the heatC

addition zone was increased to spread out the waves. This was done to avoid

merging of the characteristics to form a shock wave.

Pressure versus radius is plotted in Figure 51. The mid-characteristic,

which has points 1, 2, and 3, has an imperceptible increase in pressure as 4'

radius decreases. The characteristics converge to form a shnck wave. When this

happens, the techniques outlined in the book and NACA TN by Ferri are

aPp~l ied.

Along the characteristic, which starts at r = 6" with = -
0  the

pressure rises slightly to a rbdlus of r = 2". Between 0 (r (2, the pressure

increases rapidly. Due to the large mesh size, the pressure variation at

points 12, 13, and 14 may not be correct. Certainly the end point, number 14,

is correct. The dashed line represents the curve that would probably

obtained with finer mesh size and a more accurate treatment of the shock waves.

Note that for M2 = 2, even a normal shock wave is nebrly isentropic, which
0

permits treatment of shock waves as finite isentropic compression waves.

The conclusions from Figure 51 are as follows:

(a) In the axisymmetric geometry, compression waves tend to merge more

quickly.

(b) The increase of pressure with decreasing radius is very small until

the axis is approached.

Now let's look at the second example which was chosen to avoid a shock wave.

The characteristics for the second case are shown in Figure 52. Increasing

the spacing of the waves did not completely avoid a shock wmve. A normal shock

extends from points 13 and 14 tc the axis.
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The pressure as a function of radius is shown in Figure 51 for the mid-wave

(wave starting at r = 6 with 8 = - 30) and the terminal wave (wave starting at

r 6 w!.th 9 60). As before in the previous example, the pressure does not

increase significantly until very close to the axis. This is true for bott: the

mid-wave and the terminal wave. The pressure is snown as a dash-dot-dash line

between point 14 and the axis since this was not calculted in detail.

Figure 54 gives information about the streamlines and flow deflection.

Right on the axis, of course, the streamiline is the axis. There is large

tur- near the axis giving small radius of curvature for the streamline.

This balances the large radial pressure gradient near the axis.

The conclusions from the second case are the same as the first case.

Preliminary Corments Based on a Cursory Look at Axisymnetric Case

The change in base drag is given by

ADb= APbA (151)

Each of the two terms, APb and Ab, will now be discussea. The results shnwr.

in Figures 51, 52, and 53 suggest that Apb may not be increased significantly

as a direct result of changing geometry from planar to axisynmetric. However,

the results shown in Figures 51, 52, and 54 more closely apply to pressure at

the dividing streamline and not to base pressure. The flow in the base region

ray magnify the pressure, just as the initial pressure due to heat addition at

r = , .s increased slightly due to axisymetric geometry.

Compression originating with the heat addition will be reflected at the

so line. See Figure 48 and point of Figure 55. These compression waves

will b- reflected from the wake of the heat addition zone; see point ® of

Figure 55. The reflection may be negative, i.e., changing the compression waves

to expansion waves. This negative reflection would not be favorable.
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Now let's look at the area term. Consider the seme amount of heat, Q,

released in both planar and axisymmetric case. In the axisymmetric case, Q is

distributed along a circle of radius r2 giving A/2vTr 2 , BTU/length sec. In the

planar case, Q is distributed along two lines of length Tr2. One line is at the

top, and the other at the bottom. SeB Figure 56. For the planar case, the

heat release is Q/2rrr,, BTU/length sec, which is identical to the axisymmetric

case. The area influenced by the heat release is in the ratio

2
base area; axisymmetric case r1  rI

base area; planar case T rr2  2r2 (14 i

Making rl/r2 small helps increase pressure at rI due to heat addition; see

Figure 56. Making rl/r2 large makes the base area very small in axisymmetric

case as compared to the planar case. One factor helps; the other hurts.

As a final remark, it should be stated again that these are preliminary

thoughts and conclusions. "

S Recovery Ye Heat Addition

Some modern fighter and attack aircraft can be flown into spins of

such nature that special equipment is needed for recovery. The drag

parachute may be deployed to lift the aircraft tail. Before normal flight

is restored, the parachute must be jettisoned. An alternate method of

obtaining a torque on the aircraft would be heat addition. Figure 57 illustrates

a modern fighter in a spin. The engines run normally and produce thrust. By

spraying fuel into the exhaust stream, the heat addition deflects the jet down-

*ward. A torque is developed which tends to lift the tail. Let's compare a

parachute recovery with heat addition.
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FIGURE 56. COMPARISON OF BASE AREA FOR PLANAR AND AXISYMMETRIC GEOMETRY.
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o
Assume the aircraft has a moment of inertia of 6 x I lb ft about the

pitch axis. Assume the installed thrust is 35,000 lb with afterburner. If
the flow can be deflected by 60 with heat addition, the force tending to lift

the tail is 4000 lb. If the aircraft has a moment arm of 22 feet, the

4)
restoring torque is 8.8 x 104 1b ft. Time required to point the aircraft

downward, i.e., turn 900 in pitch, is

t = 46 see

If the .sink rate is 140 ft/sec, the recovery altitude is 6400 ft.

One can estimate the amoun, of heat to be added for a deflection of 60

using Equations (119) through (129). The temperature of exhaust must be

increased .ny 30 per cent.

Now consider a parachute of 10 ft diameter with a drag coefficient of 2.

The drag at a sink rate of 140 ft/sec will be
!1

D = pWACD = 4200 lb

This is comparable to the force due to thrust deflection. Performance of

parachute and heat addition is comparable.

SUSARY AND CONCLUDING DISCUSSION

Use of an area rule or quasi area rule implies optimization. The area

rule can be used to translate an optimum axisymmetric body, e.g., von Karman

ogive, to a three-dimensional body. The optimum axisymmetric body shape is found

by application of the calculus of variations to the source distribution function,

f(x). When there is heat addition, there is a new function to optimize, Q(x,r);

see Figure 55. Both f(x) and Q(xr) must be simultaneously optimized. The
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axisymmetric, small perturbation, solution for heat addition has never been

obtained; it is an essential building block of the quasi area rule.

When the body develops lift with aerodynamic circulation, there is another

complexity to the analysis. Vorticity due to lift must be included in the analysis.

There may be an optimum balance between lift generated aerodynamically and lift

generated by heat addition.

To apply the optimization technique to turbojets, ramjets, or other

internally burning, air breathing, engines, a different analytical technique

is required. A combined thrust-drag technique was briefly introduced. This

method uses an energy disc.

By discussing both one-dimensional and two-dimensional, planar, heat

addition, the connection between heat fronts, coribustion fans, and one-dimensional

heat addition was demonstrated. Heat addition in the planar case may be represented

either by line sources or by a volume distribution function, Q(x,r). In seeral

ways heat addition is similar to the flow generated by a solid body. The

pressure cn the flat plate of Figure 32 is the same as that caused by a wedge

of angle E). Pressure and velocity perturbations are identical for both solid

body and heat addition. Differences exist between flow over solid bodies

and flow through a region of heat addition. One difference is drag.

There are three approaches to calculate thrust minus drag in an inviscid

flow: integration of pressure over the body surface, momentum cnntrol volme,

arid wave drag. Integration if pressure is the most direct of the methods.

Figures 22 and 27 illustrate the wave energy and momentum approaches for a

thrusting, lifting, planar airfoil. Figures 20, 23, and 26 illustrate the wave

and momentum approache3 for an isolated ne:,t additLo:-i zone in an infinite medium. 'i

The merit of a particular method depends on the geometry.
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Applications of external burning include lifting, thrusting airfoils, base

or boattail pressure modification for an exhaust, development of base thrust

for projectiles, and spin recovery. External burning for airfoils and projectiles

has been studied extensively both theoretically and experimentally. A new

phenomenon occurs for the exhaust problem; this is wave trapping. A

preliminary analysis indicates heat addition for spin recovery is comparable

to use of a parachute.
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APPENDIX -PROPERTIES OF DELTA FUNCTION

I '~1 x= 0

00 +

2

S (x)dx 64 26n dx

00 x-4s x -6 x+

(1m x +O -

ffxSdx 
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Proof il and g2  positive number

d(fI) = N-I + Idf

! FdI = fl)." Idf

FdI =

,Xx Ax =flx)I(x) f I(x)f'(x)dx

-g -g2  -g2

= f(gl) - ff(x)dx = ) f(gl) . f(o) f(o)

0

IV (x)

V x6(x) =o

VI 6(ax) = (x)

proof

z = ax dz adx

J(x)8 (ax)dx f .J((z)dz if (0)

i

S VII [6(x2  a -- x ) ~
2a

Proof

x x(x-xo) +6(-; x) + 6(x-x 2) . .

(x2 - ' = [6(x + a) 8(x - a)]

U! Xo, Xl, x,2 . . are roots of f(x)
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VII ~6a -x)dx]6(x -b) 8(. b)

Proof

J (a j(a -x)dx S(x -b)da = J f(a)(ra x)(x -b)dadx

ffX -( b)dx f(b)

f f(a)6(a -b)da f (b) - b db f f ; ) (a -- b d d

£(b) -~ax)dx 6(x db fb6ax( bbx

(X)~xa)dx f(a)

Jf(b)&(a -b)db = C(a)I

ix (x)6(x -a) f(a)6(x -a)I

4

if x ~d f ( (xa~x ( r (x- 136 a



Jf(X)S(x a)da ff(a)6(x & )da fx

dx dx

f iwx

III 3D Delta Function

OT~

r, e. x -. 0

x Y

xlii 2 - -4,T6(r)r

~(r)dxdydz I (rf rO 0
r if (x -X')

2 + y- +,)2 (z -I

IfI

Equal in eense bothi behave same as factors in an integrand.
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IV Generalized 2D 6-function

S(r - a)6( -o)rdrd0 - 1

xVII Ways 'to represent 6 function

0 x

A

IVII

[O(X-] (x -a )

0( O al are roots of O(x) CO

XIX 
b l b

6 (x y)dxdy b -a

a a y k / Y =

Proof£ /

S (x -y)dx-i

a Z



dy= b-a

a

II d b

fS y~dxy b- b> y>ca

c a 0 d> Y> b

Proof

See diagram.

di 
I
J (x -y)dy 1 if b >y >b

d

r (x-y)dyO 0 f d >.> b

a

a br 

b

JS(x y)dxdya dx (b a )

.

VC a 
a

SX 
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